
Saul Greenberg
Greenberg Consulting Inc. / University of Calgary
saul@ucalgary.ca

Part 6 of the Timelapse Manual Series. Last updated May 1, 2025, Timelapse Version 2.3.3.0

Timelapse Database Guide
A guide to the internal structure of Timelapse Database tables

- 2 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

Timelapse Database Guide
A guide to the internal structure of the Timelapse database
tables1

This guide explains the internal structure of the various
database tables found in the SQLite database files created by
Timelapse.

This guide is only of interest if you want to access the data
directly from the database rather than from an exported .csv
file, and that you have the knowledge to do so. For example,
the R statistical package has libraries that can be used to easily
query SQLite databases, as explained in the final section of this
guide.

Table of Contents
Introduction 3

Why SQLite? 3

Tables in the Template .tdb file 4

• The TemplateInfo Table 4
• Template Table 5
• FolderDataInfo Table 6
• FolderDataTemplateTable 6

Tables in the Data .ddb file 7

• The DataTable 7
• The Level Tables 8
• The ImageSetTable 9
• The MarkersTable 9

Tables for Image Recognition 10

• DetectionCategories 10
• Detections 10
• ClassificationCategories 11
• Info 11

Accessing the Database with R 12

• Installing R and loading RSQLite 12
• Using R and RSQLite 12

 ©Saul Greenberg, 2022 to present.

1What you see when you run Timelapse or other software to examine
the database may not exactly match the screen images in this guide, due
to software updates made after these screen images were taken. These
differences should not affect your general understanding.

- 3 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

Introduction
Timelapse saves your data and other information in SQLite database files. If you
want to access the database directly (rather than the exported spreadsheet), read
on. Otherwise you can ignore this guide.

This guide explains the tables found in the two database files. Of those tables, the
most important ones the DataTable and the various Levels tables in the Timelapse
database .ddb file, as it will contain all your image tag data and folder-level metadata
(if used). Other tables, while described here, are of lesser or no interest, as they are
mostly used internally by Timelapse to store or track secondary information.

Timelapse relies on two database files.
• The Timelapse database (.ddb suffix) contains all your tag data, image recog-

nition data (if any), folder-level metadata, as well as other data used internally
by Timelapse. It is created when Timelapse loads a template for the first time. By
default, that file is called TimelapseData.ddb, but it can be renamed as long as it
maintains the .ddb suffix. The ddb suffix stands for data database file.

• The Timelapse Template database (.tdb suffix) contains the data defining the
template, where the template specifies your data fields and folder levels (if any).
It is created using the Timelapse Template Editor, and is read in by Timelapse. By
default, that file is called TimelapseTemplate.tdb, but it can be renamed as long
as it maintains the .tdb suffix. The tdb suffix stands for template database file.

Most people export and process their data via a CSV file. However, you can directly
access data in these Timelapse database files through other software. For example:
• The R statistical package is often used by knowledgeable people to access SQLite

data bases and to perform statistical analysis of that data.
• Popular programming languages often include extensions or libraries that can

access SQLite databases. If you are code-savvy, this gives you flexibility to do
whatever you want.

• SQLite database viewers. There are myriads of free tools available that will let
you view SQLite database files, query them, and even edit their structure and
contents. These are handy for inspecting and modifying the database table
structure and the values contained within them. Examples include:
 » DB Browser http://sqlitebrowser.org/
 » SQLite Administrator http://sqliteadmin.orbmu2k.de/

Note. Altering database files can compromise Timelapse’s ability to read those files
if it deviates from Timelapse expectations. Problematic alterations include changing
table schema, adding or deleting columns, and changing data to unexpected
formats. Make sure to back up your database files before you do any modifications.

1 The slowdown is mostly due to how Timelapse managesSQLite queries, where Timelapse reads the entire database into memory after every selection rather than on demand. This inefficiency may be fixed in the future.

Why SQLite?
SQLite is a small, fast, self-contained, high-reliability, full-featured SQL database
engine. Its web site says it is the most used database engine in the world, where it is
built into all mobile phones, comes bundled inside countless other applications that
people use every day, and is often the engine behind many web sites. Of particular
value is that SQLite can be embedded into other software.

Timelapse includes the SQLite database engine, where everything is self-contained
in the Timelapse software folder. This means that when you download Timelapse,
you are also downloading SQLite. No complex database installation is needed.

Positives
• As SQLite is installed as part of Timelapse on your local machine, you can run

Timelapse (and the database) without an Internet connection. This is particularly
valuable when working in the field.

• Everything is portable. You can move Timelapse software (and your images) from
machine to machine, and it should all work. No extra configuration is needed.

• Unlike most other databases, you don't need a systems person to install or
configure SQLite.

• In most cases, the software will run fine even on locked down machines.
• SQLite architecture is a good fit for the data requirements of most tagging needs.
Negatives
• In practice, the SQLite database is reasonably fast when storing and accessing

data for up to approximately a million or so images. It does slow down somewhat
above that, but is still workable1. For extremely large image sets, you may
want to divide your work into smaller chunks, each defining its own TImelapse
database. You can always merge these databases afterwards using the Timelapse
File | Merge databases... facility as explained in the Timelapse Reference Guide.

• SQLite is less suited for multiple people simultaneously tagging overlapping sets
of images, even when its located on a central system. Essentially, SQLite is not as
robust as industrial database engines at handling conflicts that can occur when
people simultaneously write to the database. It can still work, but you have to be
somewhat more disciplined. A better strategy is to create independent subsets
of images and database files, and assign those to different people to minimize
overlap. See the Timelapse Reference Guide for suggestions.

• Local vs. cloud based vs. virtual machines. The Timelapse / SQLite architecture
normally runs locally rather than on a central server, e.g., as a database accessed
through the cloud. See FAQ: Timelapse file management on local disks, network
drives, and the cloud if you are are using these options when using Timelapse:
 » locating your database files and images on network server or cloud drives,
 » running virtual machines, where users log onto them to do their work.

http://sqlitebrowser.org/
http://sqliteadmin.orbmu2k.de/
https://www.sqlite.org/index.html
https://timelapse.ucalgary.ca/Guides
https://timelapse.ucalgary.ca/Guides
https://timelapse.ucalgary.ca/faq/
https://timelapse.ucalgary.ca/faq/

- 4 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

Tables in the Template .tdb file
Four tables are created and maintained by the Timelapse Template Editor whenever
a project manager creates or updates a .tdb template file. These tables mostly hold
the data field specifications and folder levels (if any) that will be used by Timelapse
to create its user interface and to manage the data entered by the analyst, although
some also store information, such as version and state values.

For all but the TemplateInfo table, Timelapse will also copy, maintain and update
these table whenever the Timelapse .ddb file is created or used. In particular:
• The various tables are created or modified in the .tdb file through the Timelapse

Template Editor.
• When an image set is loaded into Timelapse for the first time, Timelapse creates

its own copy of these tables and stores it in the .ddb file. It then uses those
tables as a specification for the data fields and folder levels present in the user
interface, and to define its own tables that will hold the data entered by the
analyst.

• During subsequent loads of that image set, Timelapse compares the .tdb tables
with the .ddb copy for differences, and tries to resolve those differences by
displaying a dialog to the user.

The TemplateInfo Table
The TemplateInfo Table is found in only the Timelapse Template .tdb file. Its purpose
is to hold information that: a) helps Timelapse maintain version compatability
between itself and the database files, and b) that names the metadata standard (if
any) used to create this template.

It contains three rows.

• VersionCompatability records the last version of Timelapse used to open this
template.

• Standard records the name of the metadata standard being used, if any. If the
template was not based on an existing standard, that field is left empty.

• BackwardsCompatability records the earliest version of Timelapse that can safely
load this database. Timelapse will check this field to see if its Timelapse version
is at least as current as the one recorded here. If not, Timelapse will generate a
warning.

The TemplateInfo table schema is shown below, along with an example. In this
example, the template was not created upon a standard, which is why the Standard
field is empty.

- 5 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

Template Table
The TemplateTable table is responsible for storing all the image-level data field speci-
fications as those fields are created and updated by a project manager using the
Template Editor. While you will not normally access this table, it can be of interest if
you want to look up (or modify) the information associated with each data field.
An example TemplateTable is illustrated below, and is accompanied by its database
schema. Its contents is similar to the template created in the Timelapse QuickStart
guide, which in turn was included in the PracticeImageSet.

 Several columns in the TemplateTable are used internally by Timelapse.

• ControlOrder specifies the order of controls in the Timelapse user interface.
• SpreadSheetOrder column specifies the order of columns when data is exported

to a .CSV file, which in turn specifies how those columns appear when displayed
in a spreadsheet.

• The List column is a JSON structure that specifies the contents of the Choice
menu item. The structure contains a IncludeEmptyChoice boolean field
indicating whether an empty item should be included in the menu, and
ChoiceListNonEmpty list field containing text describing its menu items.

• Other fields are as described in the Timelapse Template Guide.

https://timelapse.ucalgary.ca/Guides

- 6 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

FolderDataInfo Table
The FolderDataInfo table is created by the Template Editor and stored in the .tdb
file. This table tracks folders levels as they are created by the project manager, and
how they were named. Similar to the Template table, it is also copied to the .ddb
file and used by Timelapse to generate the user interface and look for differences.

This table is just a lookup table, where one can find the correspondence between
the a level number and its alias used to name it (e.g., looking up 1 in the Levels
column gives the name Project in the Alias column). The Guid column is used
internally by Timelapse to associate a globally unique id with each level.

FolderDataTemplateTable
The FolderDataTemplateTable table is also created by the Template Editor and
stored in the .tdb file. This table tracks the data fields for each folder level as they
are created and modified by the project manager. Its columns are similar to the
Template table. It is also copied to the .ddb file and used by Timelapse to generate
the user interface and look for differences.

The Level column in this table indicates the folder level the data field specification
is associate with. For example, consider the first row containing a control labeled
Project Name. It is associated with the first root folder level (Level = 1). From the

table above, we know that level is named Project.

- 7 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

Tables in the Data .ddb file
The DataTable and the numbered Level tables (if any) are perhaps the only tables
of interest to a Timelapse manager who wishes to directly access data. The other
tables are either copies of the various template table, or contain information used
by Timelapse, or contain recognition data imported from a recogntion file.

The DataTable
The DataTable, found in the Timelapse .ddb file, contains all the image-level tagging
data entered by the analyzer.

The figure below illustrates an example DataTable as held by the database. Each row
is a record of data associated with an image. Each row is uniquely identified by an
integer Id. The Id is set by the database engine, where its value is incremented and
assigned when images are loaded into Timelapse for the very first time. If the analyst
deleted an image and its data, that row would no longer appear (i.e., the Id column
would appear to skip a number).

Each column corresponds to the DataLabels as specified in the Timelapse Template
file. Four represent the required data fields listed in the Timelapse Template Editor
(File, RelativePath, DateTime and DeleteFlag). These are always present, even if
their Visibility attribute is set to false. All other columns represent custom data
fields defined by the project manager when using the Timelapse Template Editor,
where each contains data entered into each image's data field.

The example Data Table below illustrates its structure and contents after a user
completed the exercises in the Timelapse QuickStart Guide. The columns reflect the
contents of the template provided in the PracticeImageSet.

The DataTable's schema is shown at the right. Even
though most schema types are TEXT, Timelapse
populates and expects certain column data to be
limited to specific values.
• Id values, set by the database engine, are

positive integers.
• File and RelativePath values are combined to

locate the file. File should be the file name of
the image or video. RelativePath values should
be the path from the root folder (which contains
the template to the image). Looking at the first
row of the example data table, the image file
IMG_001.jpg is located relative to a root folder
in the subfolder Station1\Deployment1. Files
located directly in the root folder would have
and empty RelativePath.

• DateTime, Date, Time values can only contain a date formated as a full date
yyyy-mm-dd hh:mm:ss (for example, 2015-05-27 18:01:53), or just its date or
time portion.

• Text controls can contain any text, except for Alphanumeric which is limited to
letters, numbers, dashes and underscores.

• Integer, IntegerPostive, Decimal, DecimalPositive, Count values are blank or a
number of a particular type.

• FixedChoice, MultiChoice values should match its List menu item(s) as defined in
the template (e.g., the Species column data must match bear, deer, etc.).

• Flag controls can only contain case-insensitive true or false values (e.g., the
columns Dark, Empty, Publicity, and DeleteFlag).

- 8 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

The Level Tables
If your template defined folder-levels and corresponding folder-level data
fields, data tables representing these levels and their data will be found in
the the Timelapse .ddb file. Tables, if any, are named Level1, Level2, Level3
etc, where Level1 corresponds to the root folder level. Their columns
represent the folder-level data field specifictaion in the template, along
with the data that was filled in by the analyst. These tables, along with
the DataTable, are of interest to a Timelapse user who wishes to directly
access data.

As a reminder, the previously discussed FolderDataInfo table maps the
level number of each table to its actual name. For example, looking up
Level1 in the Levels column of the FolderDataInfo table indicates that it is
named Project.

- 9 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

The ImageSetTable
The ImageSetTable is found in the Timelapse .ddb file. It stores internal information
as used by Timelapse, primarily to store a few settings about using a particular image
set, that in turn are used to restore state between sessions. This table are likely of
little to no interest to you.

• Root folder: the name of the root folder containing the template.
• Log : contents of the notes added through the Timelapse Edit | Edit Notes for

this Image Set menu item.
• Row: Indicates the Id of a row in the DataTable corresponding to the last image

the user was viewing before closing the image set.
• VersionCompatability: The last version of Timelapse used to open this database.
• BackwardsCompatability: The last version of Timelapse able to open this

database; used to see if prior versions should try to open the current file.
• SortTerms: The last used criteria used to sort the images (via the Sort menu),

stored as a JSON structure.
• SearchTerms: The last used criteria used to select the images (via the Select

menu), stored as a JSON structure.
• QuickPasteXML: used internally by Timelapse to save/restore QuickPaste

information, stored in XML format.
• BBDisplayThreshold: The confidence threshold for displaying bounding boxes

when image recognition is used.
• Standard: records the name of the metadata standard being used, if any. If the

template was not based on an existing standard, that field is left empty. Its value
is copied from the TemplateInfo table when the .ddb file is first created.

The MarkersTable
The MarkersTable is found in the Timelapse .ddb file. When Timelapse users use the
Count visual marker capability, the positions of those markers are recorded within
a JSON list structure as x,y ratios coordinate pairs that locate the marker relative to
the image size. For example, a marker's position of 0.5, 0.5 would be in the center of
the image. The Id is the Id of the record that has a marker associated with it, while
the column names reflect the name of the Count's data label. A column exists for
each Count data type included in the template. For example, if another template
defined two counters with the data labels Counter1 and Counter2, we would see two
columns with those names.

- 10 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

Tables for Image Recognition
If image recognition is enabled and you have imported recognition data, Timelapse
will create several additional tables in the .ddb file to hold the recognition data,
which in turn is used to select and display recognition data to the analyst. If you have
not read in recognition data, these tables will be absent.

For the most part, the data in those tables mirrors what was read in from the JSON
recognition file, albeit in a different format and with a few exceptions as indicated
below. For specific information, you should review the Microsoft Megadetector
specification for JSON files.

Although you could use these tables to access the recognition data, that data will
likely be best exploited within the Timelapse software. Thus the various image
recognition tables are likely of little interest to you unless you want to do something
with the recognition data that is not offered by Timelapse.

DetectionCategories
The image recognition file contains an entry called detection_categories, which
broadly identifies what the recognizer thinks it has detected and assigns a unique
integer to each category. Timelapse reads those values into the table (as illustrated
below). Timelapse also adds a new category called ‘Empty’, which will be used to
identify any images analyzed by the detector but which produced no detections. It
is mostly used as a lookup table to correlate the category number with the human-
readable label.

Detections
The image recognizer contains, for each image, a list of zero or more possible
detections.

The Detections table holds each detection as a row. The detectionID column is the
primary key. Id is the ID of the image in the DataTable, and is used to link each
detection to a single image i.e., it is a foreign key enabling a many to one relation
between the Detections and the DataTable tables. Each detection identifies the
detection category category used to look up the label in the DetectionsCategory
table, a confidence value conf for that detection, a bounding box bbox of 4
coordinates identifying where in the image that detection is located (in relative
terms), a classificaiton category classification used to look up the label in the
ClassificationCategory table, and a cconfidence value classification_conf for that
classification.

For example, in the table below:

• detectionID 2 identifies a detection on image 174 in the DataTable. Its category
is 1 (Animal, as looked up on the DetectionsCategory table) with a detection
confidence of .8. The coordinates are the bounding box around the animal. It
classification of 2 identifies it as a Bear as indicated in the ClassificationCategory
table, with a classification confidence of .72 .

https://lila.science/megadetector-output-format
https://lila.science/megadetector-output-format

- 11 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

ClassificationCategories
The classification table is mostly used as a lookup table to list classifications, and to
correlate a classification number with a human-readable label and description.

The image recognition file contains an entry called classification_categories,
which produces zero or more possible classifications of what each detection could
be along with an optional description that typically provides further information
about that classification (e.g., SpeciesNet includes the species taxa). For example,
while a detection may broadly identify something as an animal, a classification
may further identify that as a elk with high confidence and perhaps describe it as
mammalia;cetartiodactla;cervidae;cervus;canadensis. The classification_categories
list all possible entities that the recognizer will consider. Each classification_category
comprises an identifying integer, a label and a (perhaps empty) description.

Timelapse reads those values into the table (as illustrated below). As with detection_
categories, Timelapse's ‘Empty’ classification used to identify images that do not
contain any classifications is calculated on the fly, rather than included in the table.

DetectionsVideo Table
The DetectionsVideo table is found in the Timelapse .ddb file. Recognitions for video
files are associated wth a particular frame number (a video can thus have many
detections), where each video has a particular frame rate. Timelapse stores these
value in this table, where the detectionID (a foreign key) associates these values with
a particular detection.

For example, the first entry below shows that a detection with ID 814 is for the
0th frame in the video. The frame_rate is used to calculate the time that frame is
presented in the video.

Info
The image recognition file includes extra information that Timelapse records in its
Info table. This includes information about the detector name and version, the time
taken to do the recognitions, and several values indicating suggested confidence
value thresholds when using detections and classifications.

- 12 of 13 -Timelapse Database Guide Timelapse Manual Series: Part 6

Accessing the Database with R
R is a popular programming language used for statistical computing. R can import
data from many sources, such as CSV files and SQLite databases. Many users rely
on CSV files containing data exported by Timelapse, as it is simple. However, users
familiar with the SQL query language can access the data directly from the database,
where they can form more complex queries to retrieve subsets of data. The data
held in the Timelapse datatable can also be updated via these queries, although one
has to be careful to conform to the data formats expected by Timelapse.

This brief tutorial describes how to open a Timelapse .ddb database file with R, and
retrieve data from a particular table using SQL statements. We do not show how to
analyze that data, as that would be something specific to the analyst's needs and can
be done via routine R programming. Various other tutorials are available online that
provide examples of how to use SQLite within R to query and manipulate a database.

Installing R and loading RSQLite
If not already on your system, the R programming environment needs to be installed
and its RSQLite package loaded. This is very easy to do, and only needs to be done
once.

Install R on windows
Various sites include the R download for Windows, such as
https://cran.r-project.org/bin/windows/base/

Follow the instructions on that page for downloading and installing R. It should take
just a few moments.

Running R
R should now be available as a new application, for example, under your Start menu.
Run it as you would any other application. A window should appear, which includes a
menu and an R Console window.

Installing and loading RSQLite
RSQLite needs to be installed on your machine, which is a one-time operation. From
the R menu at the top of the window, select Packages | Install Package(s). You will
be asked for a preferable site to download it from (choose something from your
counter). It wil lthen ask you which package you want to install. Select RSQLite from
the scrollable list.

You then need to load the RSQLite package into R. From the R menu, select Packages
| Load Package(s), and select RSQLite from the scrollable list.

Using R and RSQLite
Connect to the Timelapse database
Lets assume a database file called TimelapseData.ddb is available that contains
tag data. To access this database, we have to connect to it. This is done through
the following command, where the full path to the database file is supplied. The
connection is assigned to the variable conn, whichis then used to access that
database.
Note: '\' is a special character, written as '\\'

conn <- dbConnect(RSQLite::SQLite(),
 "C:\\Users\\saulg\\Desktop\\PracticeImageSet\\TimelapseData.ddb")

Query the Timelapse database
SQL queries can now be easily generated and the results collected. In this example,
we collect the file names of images in the Station1\Deployment1a folder that
contain bobcat in the Species field.

Collect the query result in the variable bobcatFiles
bobcatFiles <- dbGetQuery(conn,
 "SELECT RelativePath, File FROM DataTable
 WHERE RelativePath= ' Station1\\Deployment1a'
 AND Species = 'bobcat'")

List the contents of bobcatFiles
> bobcatFiles
 RelativePath File
1 Station1\\Deployment1a IMG_031.jpg
2 Station1\\Deployment1a IMG_032.jpg
3 Station1\\Deployment1a IMG_033.jpg

https://cran.r-project.org/bin/windows/base/

	Accessing the Database with R
	Installing R and loading RSQLite
	Using R and RSQLite

	Tables for Image Recognition
	DetectionCategories
	Detections
	ClassificationCategories
	Info

	Tables in the Data .ddb file
	The DataTable
	The Level Tables
	The ImageSetTable
	The MarkersTable

	Tables in the Template .tdb file
	The TemplateInfo Table
	Template Table
	FolderDataInfo Table
	FolderDataTemplateTable

	Why SQLite?
	Introduction

